Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1285049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455061

RESUMO

Background: Downregulation of MHC class I expression and/or defects in the antigen presentation pathways are commonly reported in human cancers. Numerous studies previously have explored extensively the molecular mechanisms that underlie HLA-class I and Beta2-Microglobulin (B2M) downregulation. However, the techniques presently available to detect expression of MHC class I proteins lack the robustness, specificity and sensitivity needed for systematic integration and analysis in clinical trials. Furthermore, the dynamics of HLA-class I and B2M expression have not been comprehensively studied as a potential biomarker for immunotherapy. Methods: Using novel, validated, immunohistochemistry (IHC)-based methods for quantifying B2M and HLA-A in tumor samples from diverse cancer types, we have determined loss of B2M and HLA-A proteins in 336 archived, primary specimens and 329 biopsies from metastatic patients collected during Roche-sponsored Phase 1 clinical trials investigating novel immunotherapy candidates as monotherapy or in combination with CPI. Results: Up to 56% of cases with B2M or HLA-A loss were noted in the investigated tumor types. The frequency of loss was dependent on indication and stage of disease and revealed heterogeneous expression patterns across patients. B2M and HLA-A loss was increased in metastatic lesions compared to primary tumors, indicating selection of MHC class I low clones in metastatic and refractory tumor cells. High on-treatment B2M expression correlated with successful clinical outcome (RECIST), while high baseline B2M did not. A treatment-induced increase of B2M expression was noted in most of the patients with low B2M levels at baseline. The triple biomarker combination of B2M, CD8 and PDL1 strongly improved response prediction to cancer immunotherapy. Conclusion: Our results indicate that B2M and HLA-A loss occurs frequently in tumors and is reversed in most instances following immunotherapy which supports the conclusion that MHC class I loss is not the dominant resistance mechanism to CPI treatment. This investigation reveals a highly dynamic expression of HLA-A and B2M in tumors affected by indication, metastatic status, immunophenotype and immunotherapy treatment. Baseline expression levels of B2M on tumors may be of utility as a constituent of a biomarker panel used for selecting patients for immunotherapy clinical trials.


Assuntos
Neoplasias , Microglobulina beta-2 , Humanos , Microglobulina beta-2/genética , Antígenos de Histocompatibilidade Classe I/genética , Imunoterapia , Antígenos HLA-A
2.
NAR Cancer ; 5(3): zcad040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37502711

RESUMO

Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.

3.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37192000

RESUMO

Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Retrovirus Endógenos , Neoplasias Pulmonares , Humanos , Calbindinas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Senescência Celular/genética , Retrovirus Endógenos/genética , Neoplasias Pulmonares/genética , Provírus/genética
4.
Nature ; 616(7957): 563-573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046094

RESUMO

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Assuntos
Retrovirus Endógenos , Imunoterapia , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/virologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/virologia , Modelos Animais de Doenças , Retrovirus Endógenos/imunologia , Imunoterapia/métodos , Pulmão/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virologia , Microambiente Tumoral , Linfócitos B/imunologia , Estudos de Coortes , Anticorpos/imunologia , Anticorpos/uso terapêutico
5.
Cancer Cell ; 39(11): 1497-1518.e11, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34715028

RESUMO

ADAPTeR is a prospective, phase II study of nivolumab (anti-PD-1) in 15 treatment-naive patients (115 multiregion tumor samples) with metastatic clear cell renal cell carcinoma (ccRCC) aiming to understand the mechanism underpinning therapeutic response. Genomic analyses show no correlation between tumor molecular features and response, whereas ccRCC-specific human endogenous retrovirus expression indirectly correlates with clinical response. T cell receptor (TCR) analysis reveals a significantly higher number of expanded TCR clones pre-treatment in responders suggesting pre-existing immunity. Maintenance of highly similar clusters of TCRs post-treatment predict response, suggesting ongoing antigen engagement and survival of families of T cells likely recognizing the same antigens. In responders, nivolumab-bound CD8+ T cells are expanded and express GZMK/B. Our data suggest nivolumab drives both maintenance and replacement of previously expanded T cell clones, but only maintenance correlates with response. We hypothesize that maintenance and boosting of a pre-existing response is a key element of anti-PD-1 mode of action.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Nivolumabe/administração & dosagem , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos , Carcinoma de Células Renais/genética , Ensaios Clínicos Fase II como Assunto , Retrovirus Endógenos/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Renais/genética , Nivolumabe/farmacologia , Estudos Prospectivos , Análise de Sequência de RNA , Análise de Célula Única , Evasão Tumoral , Microambiente Tumoral , Sequenciamento do Exoma
6.
Oncogene ; 40(37): 5567-5578, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34145398

RESUMO

The ubiquitin-proteasome system maintains protein homoeostasis, underpins the cell cycle, and is dysregulated in cancer. However, the role of individual E3 ubiquitin ligases, which mediate the final step in ubiquitin-mediated proteolysis, remains incompletely understood. Identified through screening for cancer-specific endogenous retroviral transcripts, we show that the little-studied E3 ubiquitin ligase HECTD2 exerts dominant control of tumour progression in melanoma. HECTD2 cell autonomously drives the proliferation of human and murine melanoma cells by accelerating the cell cycle. HECTD2 additionally regulates cancer cell production of immune mediators, initiating multiple immune suppressive pathways, which include the cyclooxygenase 2 (COX2) pathway. Accordingly, higher HECTD2 expression is associated with weaker anti-tumour immunity and unfavourable outcome of PD-1 blockade in human melanoma and counteracts immunity against a model tumour antigen in murine melanoma. This central, multifaceted role of HECTD2 in cancer cell-autonomous proliferation and in immune evasion may provide a single target for a multipronged therapy of melanoma.


Assuntos
Evasão da Resposta Imune , Ubiquitina-Proteína Ligases , Animais , Divisão Celular , Proliferação de Células , Humanos , Lipogênese , Melanoma , Camundongos , Proteólise
7.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166614

RESUMO

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Assuntos
Retrovirus Endógenos/fisiologia , Homeostase , Inflamação/microbiologia , Inflamação/patologia , Microbiota , Animais , Bactérias/metabolismo , Cromossomos Bacterianos/genética , Dieta Hiperlipídica , Inflamação/imunologia , Inflamação/virologia , Interferon Tipo I/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Retroelementos/genética , Transdução de Sinais , Pele/imunologia , Pele/microbiologia , Linfócitos T/imunologia , Transcrição Gênica
8.
Genome Biol ; 22(1): 136, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952325

RESUMO

BACKGROUND: Eukaryotic genomes undergo pervasive transcription, leading to the production of many types of stable and unstable RNAs. Transcription is not restricted to regions with annotated gene features but includes almost any genomic context. Currently, the source and function of most RNAs originating from intergenic regions in the human genome remain unclear. RESULTS: We hypothesize that many intergenic RNAs can be ascribed to the presence of as-yet unannotated genes or the "fuzzy" transcription of known genes that extends beyond the annotated boundaries. To elucidate the contributions of these two sources, we assemble a dataset of more than 2.5 billion publicly available RNA-seq reads across 5 human cell lines and multiple cellular compartments to annotate transcriptional units in the human genome. About 80% of transcripts from unannotated intergenic regions can be attributed to the fuzzy transcription of existing genes; the remaining transcripts originate mainly from putative long non-coding RNA loci that are rarely spliced. We validate the transcriptional activity of these intergenic RNAs using independent measurements, including transcriptional start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in various phosphorylation states. We also analyze the nuclear localization and sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be rapidly degraded either on-chromatin by XRN2 or off-chromatin by the exosome. CONCLUSIONS: We provide a curated atlas of intergenic RNAs that distinguishes between alternative processing of well-annotated genes from independent transcriptional units based on the combined analysis of chromatin signatures, nuclear RNA localization, and degradation pathways.


Assuntos
DNA Intergênico/genética , Genes , RNA Mensageiro/genética , Linhagem Celular , Cromatina/genética , Endonucleases/metabolismo , Humanos , RNA Mensageiro/metabolismo , Transcrição Gênica
9.
Nat Genet ; 52(12): 1294-1302, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077915

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and a regulator of several physiological processes. ACE2 has recently been proposed to be interferon (IFN) inducible, suggesting that SARS-CoV-2 may exploit this phenomenon to enhance viral spread and questioning the efficacy of IFN treatment in coronavirus disease 2019. Using a recent de novo transcript assembly that captured previously unannotated transcripts, we describe a new isoform of ACE2, generated by co-option of intronic retroelements as promoter and alternative exon. The new transcript, termed MIRb-ACE2, exhibits specific expression patterns across the aerodigestive and gastrointestinal tracts and is highly responsive to IFN stimulation. In contrast, canonical ACE2 expression is unresponsive to IFN stimulation. Moreover, the MIRb-ACE2 translation product is a truncated, unstable ACE2 form, lacking domains required for SARS-CoV-2 binding and is therefore unlikely to contribute to or enhance viral infection.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , Interferons/metabolismo , Retroelementos/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Indução Enzimática , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Estabilidade Proteica , RNA-Seq , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Distribuição Tecidual , Células Vero
10.
PLoS Pathog ; 16(5): e1008605, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453763

RESUMO

As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention.


Assuntos
Anticorpos Antivirais/imunologia , Canais de Cálcio/imunologia , Membrana Celular/imunologia , Endocitose/imunologia , Vírus da Leucemia Murina/imunologia , Canais de Cátion TRPV/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C
11.
Genome Med ; 11(1): 86, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870430

RESUMO

BACKGROUND: Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised. METHODS: Using RNA sequencing (RNA-seq), we compared the transcription of EREs in bone marrow HSCs from a new cohort of MDS and chronic myelomonocytic leukaemia (CMML) patients before and after 5-AZA treatment with HSCs from healthy donors and AML patients. We further examined ERE transcription using the most comprehensive annotation of ERE-overlapping transcripts expressed in HSCs, generated here by de novo transcript assembly and supported by full-length RNA-seq. RESULTS: Consistent with prior reports, we found that treatment with 5-AZA increased the representation of ERE-derived RNA-seq reads in the transcriptome. However, such increases were comparable between treatment responses and failures. The extended view of HSC transcriptional diversity offered by de novo transcript assembly argued against 5-AZA-responsive EREs as determinants of the outcome of therapy. Instead, it uncovered pre-treatment expression and alternative splicing of developmentally regulated gene transcripts as predictors of the response of MDS and CMML patients to 5-AZA treatment. CONCLUSIONS: Our study identifies the developmentally regulated transcriptional signatures of protein-coding and non-coding genes, rather than EREs, as correlates of a favourable response of MDS and CMML patients to 5-AZA treatment and offers novel candidates for further evaluation.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Retroelementos/genética , Idoso , Processamento Alternativo , Azacitidina/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Transporte/genética , Diferenciação Celular , Proteínas Ativadoras de GTPase/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Manosiltransferases/genética , Pessoa de Meia-Idade , Indução de Remissão , Transcriptoma/efeitos dos fármacos , Falha de Tratamento , Proteínas Supressoras de Tumor/genética
12.
Elife ; 82019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729316

RESUMO

Immune regulation is a finely balanced process of positive and negative signals. PD-L1 and its receptor PD-1 are critical regulators of autoimmune, antiviral and antitumoural T cell responses. Although the function of its predominant membrane-bound form is well established, the source and biological activity of soluble PD-L1 (sPD-L1) remain incompletely understood. Here, we show that sPD-L1 in human healthy tissues and tumours is produced by exaptation of an intronic LINE-2A (L2A) endogenous retroelement in the CD274 gene, encoding PD-L1, which causes omission of the transmembrane domain and the regulatory sequence in the canonical 3' untranslated region. The alternatively spliced CD274-L2A transcript forms the major source of sPD-L1 and is highly conserved in hominids, but lost in mice and a few related species. Importantly, CD274-L2A-encoded sPD-L1 lacks measurable T cell inhibitory activity. Instead, it functions as a receptor antagonist, blocking the inhibitory activity of PD-L1 bound on cellular or exosomal membranes.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Retroelementos/genética , Processamento Alternativo/genética , Animais , Antígeno B7-H1/química , Antígeno B7-H1/genética , Proliferação de Células , Sequência Conservada/genética , Evolução Molecular , Éxons/genética , Células HEK293 , Hominidae/genética , Humanos , Terapia de Imunossupressão , Camundongos Endogâmicos C57BL , Domínios Proteicos , Solubilidade
13.
Genome Res ; 29(10): 1578-1590, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31537638

RESUMO

Dysregulated endogenous retroelements (EREs) are increasingly implicated in the initiation, progression, and immune surveillance of human cancer. However, incomplete knowledge of ERE activity limits mechanistic studies. By using pan-cancer de novo transcript assembly, we uncover the extent and complexity of ERE transcription. The current assembly doubled the number of previously annotated transcripts overlapping with long-terminal repeat (LTR) elements, several thousand of which were expressed specifically in one or a few related cancer types. Exemplified in melanoma, LTR-overlapping transcripts were highly predictable, disease prognostic, and closely linked with molecularly defined subtypes. They further showed the potential to affect disease-relevant genes, as well as produce novel cancer-specific antigenic peptides. This extended view of LTR elements provides the framework for functional validation of affected genes and targets for cancer immunotherapy.


Assuntos
Neoplasias/genética , Retroelementos/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Filogenia , Retroelementos/imunologia , Sequências Repetidas Terminais/genética , Transcriptoma/imunologia
14.
Blood ; 133(10): 1108-1118, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30700420

RESUMO

Best known for presenting antigenic peptides to CD4+ T cells, major histocompatibility complex class II (MHC II) also transmits or may modify intracellular signals. Here, we show that MHC II cell-autonomously regulates the balance between self-renewal and differentiation in B-cell precursors, as well as in malignant B cells. Initiation of MHC II expression early during bone marrow B-cell development limited the occupancy of cycling compartments by promoting differentiation, thus regulating the numerical output of B cells. MHC II deficiency preserved stem cell characteristics in developing pro-B cells in vivo, and ectopic MHC II expression accelerated hematopoietic stem cell differentiation in vitro. Moreover, MHC II expression restrained growth of murine B-cell leukemia cell lines in vitro and in vivo, independently of CD4+ T-cell surveillance. Our results highlight an important cell-intrinsic contribution of MHC II expression to establishing the differentiated B-cell phenotype.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular , Antígenos de Histocompatibilidade Classe II/imunologia , Animais , Apresentação de Antígeno , Medula Óssea , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Proteínas de Homeodomínio/genética , Leucemia de Células B/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Bioessays ; 41(2): e1800132, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30706962

RESUMO

Retrotransposon-derived elements (RDEs) can disrupt gene expression, but are nevertheless widespread in metazoan genomes. This review presents a hypothesis that repressive RNA-binding proteins (RBPs) facilitate the large-scale accumulation of RDEs. Many RBPs bind RDEs in pre-mRNAs to repress the effects of RDEs on RNA processing, or the formation of inverted repeat RNA structures. RDE-binding RBPs often assemble on extended, multivalent binding sites across the RDE, which ensures repression of cryptic splice or polyA sites. RBPs thereby minimize the effects of RDEs on gene expression, which likely reduces the negative selection against RDEs. While mutations that change splice sites in RDEs act as an off-on switch in exon formation, mutations that decrease the multivalency of RBP binding sites resemble a rheostat that enables a more gradual evolution of new RDE-derived exons. RBPs might also repress aberrant processing of active retrotransposons, thus increasing the chance that full-length copies are made. Taken together, in this review, it is proposed that RBPs facilitate the widespread accumulation of intronic RDEs by repressing RNA processing while chaperoning their potential to gradually evolve into new exons.


Assuntos
Genoma , Modelos Genéticos , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Retroelementos/genética , Animais , Evolução Molecular , Humanos
16.
Cell ; 174(5): 1067-1081.e17, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078707

RESUMO

Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Elementos Nucleotídeos Longos e Dispersos , Proteínas Associadas à Matriz Nuclear/química , Poliadenilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteínas de Ligação a RNA/química , RNA/química , Processamento Alternativo , Animais , Sítios de Ligação , Éxons , Células HeLa , Humanos , Íntrons , Camundongos , Mutação , Motivos de Nucleotídeos , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Splicing de RNA
17.
Elife ; 72018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29412140

RESUMO

MicroRNAs (miRNAs) exert a broad influence over gene expression by directing effector activities that impinge on translation and stability of mRNAs. We recently discovered that the cap-binding protein 4EHP is a key component of the mammalian miRNA-Induced Silencing Complex (miRISC), which mediates gene silencing. However, little is known about the mRNA repertoire that is controlled by the 4EHP/miRNA mechanism or its biological importance. Here, using ribosome profiling, we identify a subset of mRNAs that are translationally controlled by 4EHP. We show that the Dusp6 mRNA, which encodes an ERK1/2 phosphatase, is translationally repressed by 4EHP and a specific miRNA, miR-145. This promotes ERK1/2 phosphorylation, resulting in augmented cell growth and reduced apoptosis. Our findings thus empirically define the integral role of translational repression in miRNA-induced gene silencing and reveal a critical function for this process in the control of the ERK signaling cascade in mammalian cells.


Assuntos
Regulação para Baixo , Fosfatase 6 de Especificidade Dupla/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Linhagem Celular , Fator de Iniciação 4E em Eucariotos , Humanos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
18.
EMBO Mol Med ; 10(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29437778

RESUMO

Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence.


Assuntos
Terapia de Alvo Molecular , Neoplasias da Próstata/terapia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma , Humanos , Masculino , Camundongos , Naftiridinas/farmacologia , Invasividade Neoplásica , Fenótipo , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Especificidade da Espécie , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Estatmina/metabolismo , Transcriptoma/genética
20.
Proc Natl Acad Sci U S A ; 114(21): 5425-5430, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487484

RESUMO

MicroRNAs (miRNAs) play critical roles in a broad variety of biological processes by inhibiting translation initiation and by destabilizing target mRNAs. The CCR4-NOT complex effects miRNA-mediated silencing, at least in part through interactions with 4E-T (eIF4E transporter) protein, but the precise mechanism is unknown. Here we show that the cap-binding eIF4E-homologous protein 4EHP is an integral component of the miRNA-mediated silencing machinery. We demonstrate that the cap-binding activity of 4EHP contributes to the translational silencing by miRNAs through the CCR4-NOT complex. Our results show that 4EHP competes with eIF4E for binding to 4E-T, and this interaction increases the affinity of 4EHP for the cap. We propose a model wherein the 4E-T/4EHP interaction engenders a closed-loop mRNA conformation that blocks translational initiation of miRNA targets.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Interferência de RNA , Complexo de Inativação Induzido por RNA/metabolismo , Fator de Iniciação 4E em Eucariotos , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...